Hookworm infection: Prevalence among the tribal populations of Meghalaya (Northeast India) and development of the infective stage larvae under varied environmental conditions*

Larisha M. Lyndem AND Veena Tandon

Department of Zoology, North Eastern Hill University, Shillong-703022, India.

Abstract
The prevalence of hookworm infection was ascertained among the tribal populations, the Khasis, the Jaintias and the Garos of Nongkya, Sutnga and Williamnagar, respectively at three different periods of the year, i.e., pre-monsoon (March-June), monsoon (July-October) and post-monsoon (November-February) that relate to different climatic conditions prevailing through the year. All the positive samples were cultured for larvae, which in all the cases were identified as belonging to Necator americanus. Females showed a higher prevalence infection in most of the cases. Though no age-related trend in prevalence was evident, the intensity of infection was found to be more in the higher age groups i.e., 15-19 years and 20 years and above. The infected individuals in all the three study sites were treated with mebendazole in the post-monsoon time. Three weeks post treatment, the infection rate among them lowered down but showed an increasing trend again after 5-7 months and beyond. Among the environmental objects, soil was found to be the important transmitting medium. The optimal periods of development and hatching of eggs and development of L3 larvae coincided with warmer temperatures and higher humidity, which also favoured a longer period of survival of L3 larvae in the soil.

(Keywords: hookworm/Necator americanus/tribal population)

SCIENCE LETTERS, VOL. 26, NO. 3 & 4, 2003

Hookworm infection is widely prevalent infecting over a billion people worldwide particularly in the tropical and sub-tropical countries. The infection is implicated in the etiology of iron-deficiency anemia that causes chronic intestinal blood loss, and as estimated 50,000 deaths per year occur worldwide as a result of hookworm infection alone. Various other nutritional deficiencies including protein, folic acid and Vitamin B12 have been reported in individuals with hookworm infections. Heavy hookworm infections may also lead to retarded growth and development of children. Hookworm thresholds are based on upper and lower bound estimates of the relationship between infection intensity and anemia. As per estimates, the highest prevalence morbidity related to hookworm infection is in the Indian sub-continent. The prevalence and severity of hookworm infection vary widely in different parts of the globe because of the factors such as climatic, socioeconomic, educational and environmental sanitary conditions and to a great extent also show relationship with age and sex of the host.

While Ancylostoma duodenale is usually found in cooler drier regions in Europe, the Middle East, the Mediterran-
nean, North Africa, Pakistan and Northern India, *Necator americanus* predominates in the Americas, Central Africa, Eastern and Southern India, Indonesia and South Pacific\(^9\).

In context of India, extensive investigation carried out on similar lines covering almost all provinces of erstwhile British India, provided immense information on the prevalence and epidemiology of hookworm infection in relation to the prevailing geographical, climatic and socio-cultural conditions\(^10\). Recent studies in Assam, carried out after a gap of nearly 8 decades, still show a high prevalence of hookworm infection in human populations particularly those in the tea gardens\(^11\). However, information regarding the species of hookworm implicated in infection in North-east Indian is lacking. This information is needed to assess the clinical significance of the hookworm infection, since blood loss due to the species commonly infecting man varies\(^12\). In the state of Meghalaya, which represents varied climates *viz.*, hot mild, sub-tropical and humid, reports from the various medical agencies suggested a considerable prevalence of hookworm infection in the region.

Many reports deal with the investigations into the ways in which nematode infections thrive in society and in many of these, soil and field-grown vegetables, in particular, have been found to be the major transmitting media for nemic infection in the area\(^13\). Transmission of the geo-helminthic parasites has a link to topography-related climatic variables to differing extents since their life cycle includes stages outside the host with the environment. Temperature, moisture and day light are important limiting factors that control the hatching of the eggs and development of L\(_3\) infective larvae of gastrointestinal helminths\(^14\). Knowledge of the geographic distribution and seasonal occurrence of these parasites is of practical importance when devising control programs for a particular region. The present study (1996-1999) was undertaken to assess the status of hookworm infection in some chosen areas of Meghalaya.

Study area:

Nongkya: Located in Umsning (Ribhoi District) about 33 kms north of the state capital Shillong, the area represents a warm and humid climate experiencing rainfall almost throughout the year, with high relative humidity except for a short period of dry season usually during winter (November-February). (Table 1). This village comprised of the Khasi tribal population only with a total of 489 individuals. The eco-system basis of the area is paddy field and the occupation, agriculture. The level of hygiene and sanitation is by and large very poor. Only 2% of the households have latrines and all the inhabitants use paper for self-ablation as a common practice.

Sutnga: This area is located in the Jaintia Hills District about 30 kms from Jowai, the district headquarter and about 90 km south of the state capital Shillong. This village represents a warm but very less humid climate compared to Nongkya village. It too experiences rainfall throughout the year except for a short period of dry season (November-February). About 80% of the area is covered with coalfields. Hence the villagers are either
directly or indirectly involved in coal mining. Their living condition is very poor with only 60% having proper latrines. The village had a population of 804 individuals belonging to the Jaintia tribe only.

Williamnagar: This is the head quarter of the East Garo Hills District and is situated about 330 km west of the state capital Shillong. The climate is hot and humid. A few inhabitants have simple pit latrine. The villagers are engaged in poultry, piggery, cattle farming and paddy cultivation for their livelihood. The place had a population of 1142, of which 962 belonged to the Garo tribe.

Survey and analysis:

Faecal samples were examined for hookworm and other intestinal helminthes, if any, using Kato-katz thick smear15 and direct faecal smear methods. To determine the hookworm species, positive hookworm samples were cultured using the modified Harada-Mori filter-paper-strip cultivation method16. The intensity of infection was assessed by counting the number of eggs per gram (EPG) of faecal sample, following Stoll's dilution counting method17 and infections were classified according to individual egg counts as heavy, moderate, or light, following WHO recommendations18.

The species identification was determined on the basis of the subtle morphological characteristics of the L\textsubscript{3} larvae and the adult worm19.

Immediate after the post-monsoon survey the infected individuals were treated with a single dose of mebendazole (500 mg) under the supervision of the medical practitioner of the respective village. Stool examination was carried out again and the prevalence recorded at time periods of 3 weeks, 5-7 months and 9-12 months post treatment in all the three study sites. Data was also collected on the living conditions of the infected individuals.

Environmental objects such as soil, water and vegetables were collected from the three study sites and examined for positivity of hookworm eggs or larvae following Baermann's and Salt floatation techniques20,21.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\textbf{Study sites} & \textbf{Nongkya} & & & \textbf{Sutnga} & & & \textbf{Williamnagar} \\
\hline
\textbf{Period} & \textbf{Temperature} & \textbf{RH} & & \textbf{Temperature} & \textbf{RH} & & \textbf{Temperature} & \textbf{RH} \\
\hline
\textbf{Min.} & \textbf{Max.} & & & \textbf{Min.} & \textbf{Max.} & & \textbf{Min.} & \textbf{Max.} \\
\hline
Pre-monsoon (Nov-Feb.) & 7.5 & 19 & & 6 & 14 & & 9 & 20.5 \\
\hline
Monsoon (March-Jun) & 13.5 & 37 & 67-90 & 10.5 & 24.5 & 50-80 & 18 & 42 & 68-9 \\
\hline
Post-monsoon (July-Oct.) & 15.5 & 37 & & 10.5 & 25 & & 15 & 32 & \\
\hline
\end{tabular}
\caption{Mean temperature (°C) and relative humidity (RH-%) recorded in the three study sites during the study period.}
\end{table}
(corresponding to the ambient climatic conditions that prevail in winter and spring (i.e., late November-March), autumn (September-early November) and summer (April-August), respectively. Three replicates of each culture were prepared using sample from a single infected subject.

Based on the morphological characters of both the larvae retrieved fro culture and the adult worms, the hookworm species prevailing in all the studied sites were identified as *Necator americanus*.

Prevalence of hookworm infection:

In Nongkya, of the 425 subjects examined, 58.57%, 68.94% and 74.10% were found infected with single or multiple species infections involving hookworm (H), *Ascaris* (A) and *Trichuris* (T) in the pre-monsoon and post-monsoon periods of the year respectively. The prevalence of hookworm infection alone was 7.29-9.17% all through the year. Dualfection (H+A) and triplefection (H+A+T) were also recorded (Table 2). In Sutnga, of the 700 subjects examined, 90.71%, 93.28% and 97.85% were found infected with single or multiple species infection in the three different periods, respectively. Though dualfection with H+A, H+T and A+T and triplefection (H+A+T) were also found, the single species infection of hookworm showed a high prevalence (Table 3). In Williamnagar, of the 962 subjects examined, 58.93%, 81.49% and 91.58% were found infected with single or multiple species infection in the three different periods respectively. The prevalence of hookworm infection alone ranged between 25.36-46.86% (Table 4).

In Nongkya the age group 5-9 years was identified as the high-risk age group, while in Sutnga and Williamnagar it was 10-14 years for hookworm infection. In most cases, females were more infected than males in all the three village areas, though the differences in prevalence and intensity were not significant.

Of the environmental objects only the soil samples were found to show contamination with hookworm eggs/larvae from all the three study sites.

<table>
<thead>
<tr>
<th>Infection</th>
<th>Pre-monsoon</th>
<th>Monsoon</th>
<th>Post-monsoon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. infected</td>
<td>Prevalence %</td>
<td>No. infected</td>
</tr>
<tr>
<td>Hookworm</td>
<td>31</td>
<td>7.29</td>
<td>38</td>
</tr>
<tr>
<td>Ascaris</td>
<td>162</td>
<td>38.11</td>
<td>184</td>
</tr>
<tr>
<td>Trichuris</td>
<td>4</td>
<td>0.94</td>
<td>4</td>
</tr>
<tr>
<td>H+A</td>
<td>44</td>
<td>10.35</td>
<td>57</td>
</tr>
<tr>
<td>H+T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A+T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H+A+T</td>
<td>8</td>
<td>1.88</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>249</td>
<td>58.57</td>
<td>293</td>
</tr>
</tbody>
</table>
Table 3–Prevalence of Hookworm and its associated gastrointestinal nematode infection in Sutnga village: No. of subjects examined = 700, M = 410, F = 290.

<table>
<thead>
<tr>
<th>Infection</th>
<th>Pre-monsoon</th>
<th>Monsoon</th>
<th>Post-monsoon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. infected</td>
<td>Prevalence %</td>
<td>No. infected</td>
</tr>
<tr>
<td>Hookworm</td>
<td>267</td>
<td>38.14</td>
<td>279</td>
</tr>
<tr>
<td>Ascaris</td>
<td>309</td>
<td>44.42</td>
<td>328</td>
</tr>
<tr>
<td>Trichuris</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H+A</td>
<td>45</td>
<td>6.42</td>
<td>46</td>
</tr>
<tr>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A+T</td>
<td>7</td>
<td>1.00</td>
<td>3</td>
</tr>
<tr>
<td>H+A+T</td>
<td>5</td>
<td>0.71</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>635</td>
<td>90.71</td>
<td>653</td>
</tr>
</tbody>
</table>

Table 4–Prevalence of Hookworm and its associated gastro-intestinal nematode infection in Williamnagar: No. of subjects examined = 962, M = 448, F = 514.

<table>
<thead>
<tr>
<th>Infection</th>
<th>Pre-monsoon</th>
<th>Monsoon</th>
<th>Post-monsoon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. infected</td>
<td>Prevalence %</td>
<td>No. infected</td>
</tr>
<tr>
<td>Hookworm</td>
<td>244</td>
<td>25.36</td>
<td>407</td>
</tr>
<tr>
<td>Ascaris</td>
<td>301</td>
<td>31.28</td>
<td>351</td>
</tr>
<tr>
<td>Trichuris</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>H+A</td>
<td>19</td>
<td>1.97</td>
<td>21</td>
</tr>
<tr>
<td>H+T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A+T</td>
<td>2</td>
<td>0.20</td>
<td>2</td>
</tr>
<tr>
<td>H+A+T</td>
<td>1</td>
<td>0.10</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>567</td>
<td>58.93</td>
<td>784</td>
</tr>
</tbody>
</table>

After treatment the prevalence of infection was found to be low in all the three study areas. The number of subjects infected with single or multiple species infection declined to 6.82%, 8.14% and 9.35%, 3 weeks post treatment, but it rose again (24.7, 18 and 17.87%, respectively) after 5-7 months and further beyond, following treatment.

No development of eggs incubated at <14°C was observed. The rate of development and hatching of hookworm eggs was observed to be low at 14°C, RH 57.5% and highest at 28°C, RH 82.5%. It took only about 8-10 days for the eggs to develop and hatch at 14-18°C, while only 2-3 days at 22-28°C at the same RH of 82.5%. Beyond 28°C a decline both in development and hatching rate was observed. The various developmental stages of the egg and larvae post hatching at optimal temperature (28°C) an RH (82.5%) are shown in Figs. 1-5.
Figs. 1-5. Development of *Necator americanus*

1. Fertilised egg (embryonation stage)
2. Morula stage
3. Infective egg containing larval stage
4. Rhabditiform larva stage
5. Filariform larva
The L₃ filariform stage of larvae was observed in the culture between 8-9 days post hatching at 22-25°C, RH 82.5%. However, the time period of development to L₃ stage was prolonged to 9-12 days in the culture set at lower humidity. The rate of turnover of L₃ and their survival rate showed a rise with increase temperature to 28°C, but beyond which showed a decline. The developed L₃ larvae were observed to survive for longer time (till about 80 days) at 28°C, while only about 55 days at 14°C. At very low temperature (2-4°C) the filariform larvae did not survive beyond 4 days.

Discussion:

Necator americanus was found to be the only hookworm species infecting human subjects in the three study areas. Nawalinski²³ also reported N. americanus as a significant proportion of hookworm infection in rural communities in India.

The higher prevalence of hookworm infection in the present study in females than in males in most of the cases may be related to the profession of the subjects; as per the social set up of the natives of Meghalaya, the women folk work more in the fields and outdoors, are therefore prone to more infection as compared to the males. Gandhi²⁴ also reported that females were more likely to have moderate or heavy infections, whereas the males were more likely to have light infections and that the infected subjects harboured a combination of geohelminthic nematodes. Intestinal parasitoses involving multiple species infections are of common occurrence in South-east Asia²⁵,²⁶. The present study identified the high-risk age group for the hookworm infection as 5-9 years in Nongkya, which represents a typical rural position, and 10-14 years in Sutnga and Williamnagar, the latter two places relate to semi urban epidemiology as they include coal miners and animal farmers²⁷. The prevalence thus seems to be related to the status of personal hygiene practised in the said age groups and also more frequent exposure to the places such as house yards, school compounds, playgrounds and public places which are contaminated with hookworm eggs or larvae. Toma²⁸ identified the age group 4-14 years to be most likely infected with hookworm. However in contrast to the present finding, other studies suggest a different pattern in which both prevalence and intensity of infection showed a rise with age²⁹ and the worms tended to be more aggregated among adults²⁴,²⁶.

All the positive cases of hookworm infection showed light infection. This low intensity of infection in the subjects may be due to inter-species competition. The estimation of worm burden which is based on EPG count may have several sources of variation which can make the inference of intensity status for individuals imprecise²⁹, egg counts may also vary from day to day within individuals and the fecundity of female worms is also dependent on worm density³⁰. However even with mild to moderate worm burden, the continued presence of worms in the marginally nourished subjects could be a cause of concern in contributing to anaemia conditions³¹.

The investigation showed that soil in places of frequent human exposure in the study area is a potential source of hookworm infection to the inhabitants. Geohelminthic intestinal parasites have been repeatedly reported as common infections in human population of several
regions of India. Due to the enormous number of eggs produced by one adult female worm, a single contaminated stool passed in the soil is sufficient to infect an entire population.

After treatment with single dose of mebendazole, the prevalence of infection initially declined, but showed a rise after a lapse of several months perhaps because of endemcity of environment with infective stages. Chemotherapy, thus providing a periodic cure, did not check re-infection of predisposition to infection.

Temperature and humidity have a marked effect on the development and hatching of hookworm eggs. Of the two factors, temperature played an important role, since at low temperatures <14°C (corresponding to the cold winter temperatures of late November to early February) no development of eggs occurred even when the RH decreased or increased. At higher temperature (30°C) the eggs took much less time in hatching, while the rate of hatching, survival of L3 as well as their longevity declined compared to those incubated at 20°C. The optimal development temperature does not necessarily relate to larvae with highest larval longevity.

Thanks are due to the Head, Department of Zoology, NEHU for providing necessary laboratory facilities. The study was supported by a research grant from Govind Ballabh Plant Institute of Himalayan Environment & Development (Ministry of Environment & Forests, GOI) to VT.

References

Members of the N.A.S.I. for the year 2003

1. Dr. D. Channe Gowda
 Reader
 Department of Studies in Chemistry
 University of Mysore
 Manasagangotri, Mysore-570006

2. Dr. G.A. Nagana Gowda
 Assistant Professor
 Centre of Biomedical Magnetic Resonance
 Sanjay Gandhi Post Graduate
 Institute of Medical Sciences
 Raebareli Road, Lucknow-226014

3. Prof. Subodh Kumar
 Professor
 Department of Chemistry
 Guru Nanak Dev University
 Amritsar-143005

4. Dr. Dipak Prajapati
 Scientist EII
 Department of Organic Chemistry
 Regional Research Laboratory
 Jorhat-785006

5. Dr. Ravindra Nath Singh
 Reader
 Department of Chemistry, Faculty
 of Science, BHU, Varanasi - 221005

6. Dr. Sudha Srivastava
 Scientific Officer 'E'
 Tata Institute of Fundamental
 Research, Homi Bhabha Road
 Navy Nagar, Mumbai-400005

7. Dr. Anup K. Ghosh
 Associate Professor
 Centre for Polymer Science & Engineering
 Indian Institute of Technology
 Hauz Khas, New Delhi-110016

8. Prof. M.N. Gopalan
 ISTE Visiting Professor, Ind. Soc.
 for Techn. Edu.
 56, Maruthi Temple Street 4th
 Main, Kuveempu Nagar
 Mysore-570009

9. Prof. Ajit Rangnath Kulkarni
 Professor
 Department of Metallurgical Engineering & Materials Science
 Indian Institute of Technology-Bombay
 Powai, Mumbai - 400076

10. Dr. Indranil Manna
 Associate Professor
 Department of Metallurgical Engineering & Materials Engineering
 Indian Institute of Technology
 Kharagpur-721302

11. Dr. Ravindra Kumar Srivastava
 Motilal Nehru National Institute of Technology, Allahabad-211004