On finite groups having perfect order subsets

dc.contributor.authorDas, Ashish Kumar
dc.date.accessioned2010-08-03T19:38:35Z
dc.date.available2010-08-03T19:38:35Z
dc.date.issued2009
dc.description.abstractA finite group G is said to be a POS-group if for each x in G the cardinality of the set {y ∈ G|o(y) = o(x)} is a divisor of the order of G. In this paper we study some of the properties of arbitrary POS-groups, and construct a couple of new families of nonabelian POS-groups. We also prove that the alternating group An, n ≥ 3, is not a POS-group.en_US
dc.document.departmentMathematicsen_US
dc.document.placeofpublicationInternational Journal of Algebraen_US
dc.document.publisherHikari Ltden_US
dc.document.yearofpublication2009en_US
dc.identifier.issn1312-8868
dc.identifier.urihttps://dspace.nehu.ac.in/handle/1/2552
dc.journal.pagerange629-637en_US
dc.journal.volumevolume 3, number 13en_US
dc.language.isoenen_US
dc.publisherHikari Ltden_US
dc.subjectfinite groups, semidirect product, divisibility, primesen_US
dc.subject20D60, 11A41, 11Z05en_US
dc.submitter.addressDepartment of Mathematics, North-Eastern Hill University Permanent Campus, Shillong-793022, Meghalaya, Indiaen_US
dc.titleOn finite groups having perfect order subsetsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dasIJA13-16-2009[1].pdf
Size:
102.02 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: