Methylammonium/ammonium transport and metabolism in the heterocystous cyanobacteria: *Anabaena* 7120 and *Nostoc* ANTH

R. Prakasham and A.N. Rai

Department of Biochemistry, School of Life Science, North-Eastern Hill University, Shillong - 793 014, India

ABSTRACT

Methylammonium (NH₄⁺) transport and metabolism was studied in *Anabaena* 7120, a free-living cyanobacterium, and in *Nostoc* ANTH, a free-living isolate of *Anthoceros punctatus*. CH₃NH₃⁺ was assimilated as methylglutamine in *Anabaena* 7120, whereas, it was further metabolised as N-source in *Nostoc* ANTH. Both cyanobacteria possess two ammonium transport systems (ATS): one is responsible for accumulation of CH₃NH₃⁺ as internal free pool and is insensitive to methionine sulfoximine (MSX); the other is dependent on the assimilation of transported species and sensitive to MSX. These two systems showed dual affinity modulation in *Anabaena* 7120.

INTRODUCTION

A better understanding of nitrogen metabolism is a prerequisite for enhancing the potential use of diazotrophic cyanobacteria as biofertilizer. Ammonium transport mechanism is one of the crucial aspects which needs a detailed study. This is because ammonium is the first product of N₂-metabolism and it exerts regulatory effect on various processes of N-metabolism in diazotrophic cyanobacteria. For example, ammonium acts as repressor of nitrogenase synthesis, heterocyst differentiation and uptake and utilization of other nitrogenous compounds (Whitton and Carr, 1982; Gibson, 1984; Bagchi *et al.*, 1985; 1985b; Mackerras and Smith, 1986). Occurrence of ammonium transport system (ATS) is well known in various prokaryotes (Kleiner, 1985). Characterisation of this system in cyanobacteria was started in 1984 by Rai *et al.* and considerable work has been done since then in this regard (Boussiba *et al.*, 1984; Kashyap and Johar, 1984; Singh *et al.*, 1985, 1986, 1987; Kerby *et al.*, 1986; Rai *et al.* 1986; Rai and Prakasham, 1989).

Using radioactive analogue of ammonium, ¹⁴CH₃NH₃⁺ as probe, we have characterized the ATS in the two strains of diazotrophic cyanobacteria *Anabaena* 7120 (a free-living form) and *Nostoc* ANTH (an isolate from *Anthoceros punctatus*).

CH₃NH₃⁺ is a growth inhibitor of various organisms (Singh *et al.*, 1983). However, it can be utilized as carbon and/or nitrogen source by some prokaryotes
depending on the growth conditions (Holtel and Kleiner, 1985). Therefore, before using it to characterize ATS in cyanobacteria we also studied the effect of CH$_3$NH$_3^+$ on growth and the fate of intracellular CH$_3$NH$_3^+$ in these two strains.

MATERIALS AND METHODS

Axenic cultures of *Anabaena* 7120 and *Nostoc* ANTH were grown continuously in BG-11$_o$ medium (Rippka et al., 1979) at 25 °C and at a photon fluence rate of 50 µmol. m$^{-2}$. s$^{-1}$. The growth medium was supplemented with CH$_3$NH$_3^+$ (5mM) and/or dichlorophenyl dimethylurea (DCMU; 10 µM) as and when required and the medium was buffered with hydroxymethylpiperazine ethane sulfonic acid (HEPES) pH 7.5 (10mM) before autoclaving.

The protein and chlorophyll a content was estimated according to Lowry et al. (1951) and Mackinney (1941), respectively. The glutamine synthetase (GS) and nitrogenase activities were measured using methods of Sampaio et al. (1979) and Stewart et al. (1967), respectively.

14CH$_3$NH$_3^+$ uptake studies were done as described by Rai and Prakasham, (1989) using a final concentration of 50 µmol. dm$^{-3}$ 14CH$_3$NH$_3^+$ (specific activity 9.25 KBq.dm$^{-3}$). Nonspecific adsorption of 14CH$_3$NH$_3^+$ was measured by following 14C- incorporation in toluene-treated cells, and these values were subtracted before plotting the data.

Extraction and estimation of amino acid pool were performed by resuspending the incubated cyanobacterial cells in ethanol/water (70/30; v/v) mixture and incubated for 6 hours at 4°C. Then the filtrate was subjected to rotary evaporation at 35°C. The residue was dissolved in 2 cm3 of sodium citrate buffer (pH 2.2) and amino acids were detected by using HPLC (Shimadzu LC, 4A). 14C- incorporation in amino acids was measured by Liquid Scintillation Spectrophotometer LS 1801 (Beckman).

14CH$_3$NH$_3^+$ was obtained from Amersham, U.K. All other chemicals used were purchased from Sigma Chemical Co., U.S.A.

RESULTS AND DISCUSSION

Table 1 shows the growth, heterocyst frequency and nitrogenase activity in *Anabaena* 7120 and *Nostoc* ANTH grown in the presence and absence of CH$_3$NH$_3^+$. Both organisms grew well in N$_2$-medium. The observed specific growth rates were 1.065 and 0.62 per day for *Anabaena* 7120 and *Nostoc* ANTH, respectively. These data indicate that both cyanobacteria are able to utilize N$_2$ as nitrogen source. This conclusion was also supported by the observation that both these organisms showed
heterocyst differentiation and nitrogenase activity in air-grown cultures. The observed heterocyst frequency was 5.4% in Anabaena 7120 and 6.5% in Nostoc ANTH and nitrogenase activity was 4.25 nmol C₂H₂ reduced h⁻¹ µg⁻¹ Chl a in Anabaena 7120 and 5.25 nmol C₂H₂ reduced h⁻¹ µg⁻¹ Chl a in Nostoc ANTH (table 1).

Table 1. Growth (specific growth rate, day⁻¹), heterocyst frequency (%) and nitrogenase activity (nmol C₂H₂ reduced h⁻¹ µg⁻¹ Chl a) in absence and presence of CH₃NH₃⁺ and/or DCMU in Nostoc ANTH and Anabaena 7120.

<table>
<thead>
<tr>
<th>Organism</th>
<th>CH₃NH₃⁺</th>
<th>Growth</th>
<th>Heterocyst</th>
<th>Nitrogenase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+DCMU</td>
<td>-DCMU</td>
<td>frequency</td>
<td>activity</td>
</tr>
<tr>
<td>Nostoc ANTH</td>
<td>0.00</td>
<td>0.76</td>
<td>0.5 ± 0.02</td>
<td>ND*</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>-</td>
<td>0.00</td>
<td>6.5 ± 0.3</td>
</tr>
<tr>
<td>Anabaena 7120</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>1.065</td>
<td>5.4 ± 0.02</td>
<td>4.25 ± 0.50</td>
</tr>
</tbody>
</table>

* = Not detectable

The growth pattern, however, in CH₃NH₃⁺ supplemented medium was different in the two cyanobacteria. This medium did not support the growth of Anabaena 7120, while it was found to be growth supportive in Nostoc ANTH (table 1). The specific growth rate of Nostoc ANTH, in CH₃NH₃⁺ supplemented medium, was 0.76 per day although heterocyst differentiation and nitrogenase activity were severely inhibited (table 1). These results suggested that CH₃NH₃⁺ can be utilized as N-source by this cyanobacterium. The growth of Nostoc ANTH, was inhibited when CH₃NH₃⁺ medium was supplemented with DCMU indicating that CH₃NH₃⁺ is metabolised as N-source but not as C-source.

Further CH₃NH₃⁺ metabolism was studied by incubating the cells with ¹⁴CH₃NH₃⁺ and at time intervals thereafter, following the ¹⁴C-incorporation in ethanol soluble fractions. These fractions were analyzed for amino acids and then measured for ¹⁴C-incorporation. When Anabaena 7120 cells were analyzed after incubation with ¹⁴CH₃NH₃⁺, radioactivity was detected in an amino acid peak, eluted near glutamine peak, and in methylamine peak (fig 1a). The amino acid, when analyzed for its composition after hydrolysis, yielded ¹⁴CH₃NH₃⁺ (Fig 1b) and glutamate (data not shown) suggesting that the compound was methylglutamine. Such results are consistent with the results observed in Anabaena variabilis (Rai et al., 1984; Kerby et al., 1986, 1987). In case of Nostoc ANTH, however, ¹⁴C-incorporation was found in three peaks (after 10 min incubation with ¹⁴CH₃NH₃⁺) corresponding to aspartic
Fig 1. $^{14}\text{CH}_3\text{NH}_3$ metabolism by *Anabaena* 7120. Exponentially growing filaments (in this and next two experiments) were harvested and resuspended in HEPES pH 7.0 (10mM) buffer. $^{14}\text{CH}_3\text{NH}_3$ was then added to a final concentration of 50 μM and after specified incubation times, the cells were harvested, washed and then extracted for amino acid analysis (see materials and methods).

a) Elution profile of 14C-amino acids in 60 min $^{14}\text{CH}_3\text{NH}_3$ incubated *Anabaena* 7120 cells detected by measuring the radioactivity in fractions (fractions collected at every min during amino acid separation by HPLC). b) Hydrolyzed 14C-amino acid peak of Fig 1a.

acid, glutamate and alanine (fig 2a). The 14C-incorporation in these peaks increased with increase in time (fig 2b, 2c, & 2d) indicating that $^{14}\text{CH}_3\text{NH}_3$ is metabolised as N-source by this cyanobacterium. In contrast, longer incubations of *Anabaena* 7120 cells with $^{14}\text{CH}_3\text{NH}_3$ resulted in higher accumulation of methylglutamine only.
Fig. 2(a & b). \(^{14}\text{CH}_2\text{NH}_3^+\) metabolism in Nostoc ANTH. Elution profile of \(^{14}\text{C}\)-amino acids (detected as in fig 1) in 10 min, (a); and 30 min, (b) \(^{14}\text{CH}_2\text{NH}_3^+\) incubated cells.

(data not shown). Azaserine pretreated Nostoc ANTH cells showed \(^{14}\text{C}\)-incorporation only in methylglutamine (fig 3) similar to that of Anabaena 7120. These results suggest that \(\text{CH}_2\text{NH}_3^+\) is assimilated, in Nostoc ANTH, via primary ammonia assimilating pathway (glutamine synthetase-glutamate synthase) while in Anabaena 7120 \(\text{CH}_2\text{NH}_3^+\) is metabolized only upto methylglutamine.

Thus, the Nostoc ANTH, a cultured isolate, seems quite different from Anabaena 7120, a free-living cyanobacterium with regard to \(\text{CH}_2\text{NH}_3^+\) metabolism. In subsequent studies we characterized the \(^{14}\text{CH}_2\text{NH}_3^+\) uptake in \(\text{N}_2\)-grown cultures of the two cyanobacteria.

A biphasic \(^{14}\text{CH}_2\text{NH}_3^+\) uptake pattern was observed in both cyanobacteria, with an initial rapid phase followed by a slower second phase (fig 4). The uptake rates, however, differed in both organisms. In Anabaena 7120, these were observed to be 0.111 and 0.0216 nmol. min\(^{-1}\)µg\(^{-1}\) Chla \(a\) (fig 4a) while in Nostoc ANTH, they were 0.119 and 0.0156 nmol.min\(^{-1}\).µg\(^{-1}\) Chl \(a\) (fig 4b), during initial and second phases, respectively.
Simultaneous addition of NH$_4$C1 and 14CH$_3$NH$_3^+$ caused total inhibition of 14CH$_3$NH$_3^+$ uptake in both cyanobacteria (fig 5). When NH$_4$C1 was added subsequent to 14CH$_3$NH$_3^+$ addition, it showed an immediate inhibition of 14CH$_3$NH$_3^+$ uptake and an immediate efflux of preaccumulated 14C-label from cells (fig 5). These results suggested the occurrence of a common transport system for both NH$_4$C1 and 14CH$_3$NH$_3^+$ in these cyanobacteria. These findings and interpretations are consistent with observations in other cyanobacteria (Rai et al., 1984; Kleiner, 1985; Singh et al., 1985, 1986, 1987, Kerby et al., 1986; 1987, Reglinski et al., 1989).

The NH$_4^+$-displaceable 14C-label remained constant over the experimental period (Fig 5). The amount of 14C-label displaced by NH$_4$C1 was 20 and 21 Bq. μg$^{-1}$ Chla in Anabaena 7120 and Nostoc ANTH, respectively. This amount of 14C-label was similar to the 14CH$_3$NH$_3^+$ transported into the cells during initial rapid phase. Such data indicate the presence of free 14CH$_3$NH$_3^+$ pool inside the cells and that such a pool seems to be built up during the initial phase. These results also suggest that the first rapid phase is responsible for accumulation of 14CH$_3$NH$_3^+$ as free pool inside the cells.
Fig 3. 14CH$_3$NH$_3^+$ metabolism in 60 min azaserine (100μM) pretreated Nostoc ANTH cells. The 14CH$_3$NH$_3^+$ incubation time was 60 min.

The NH$_4^+$-undisableable 14C-label inside the cells, however, increased with increase in time (fig 5). This increase corresponded to the linear 14CH$_3$NH$_3^+$ uptake during the second phase in control cells suggesting that NH$_4^+$-undisableable 14C label is the assimilated product of 14CH$_3$NH$_3^+$, which is not effluxed by NH$_4$Cl addition. These findings indicated that the second 14CH$_3$NH$_3^+$ uptake phase is dependent on the assimilation of transported species. Indeed our HPLC data confirm this by showing increased 14C-methylglutamine accumulation, in Anabaena 7120, with increase in time of 14CH$_3$NH$_3^+$ incorporation during the second phase (fig 1).

Immediate effects of MSX on 14CH$_3$NH$_3^+$ uptake in both cyanobacteria are presented in fig. 6. Simultaneous addition of both MSX and 14CH$_3$NH$_3^+$ resulted in an unaltered first phase in Anabaena 7120 while in Nostoc ANTH, MSX affected the first phase (fig 6). The uptake rate in the presence of MSX, in Nostoc ANTH, upto 30 seconds was similar to that observed in control cells followed by a slower uptake rate till the 14C-label in the cells reached a level similar to that at the end of first phase of 14CH$_3$NH$_3^+$ uptake in control cells (fig 6b).
When MSX was added after $^{14}\text{CH}_3\text{NH}_3^+$ addition, during the second phase of $^{14}\text{CH}_3\text{NH}_3^+$ uptake, it caused an immediate inhibition of $^{14}\text{CH}_3\text{NH}_3^+$ uptake both in *Anabaena* 7120 and *Nostoc* ANTH (fig 6). However, in the case of *Nostoc* ANTH, MSX caused an efflux of 16 Bq mg$^{-1}$ Chl a 14C-label (fig 6b). This immediate $^{14}\text{CH}_3\text{NH}_3^+$ uptake inhibition by MSX concentration (10 μM) used here showed no GS inactivation up to 15 min (data not shown). Thus, MSX seems to have two inhibitory targets in these cyanobacteria: (1) at transport level and (2) at GS inactivation level. These results are similar to those in *Anabaena dolioiulm* (Singh et al., 1986) and indicate that ATS may have a regulatory site of MSX as proposed in bacteria (Kleiner and Castorhop, 1982). Inhibition of only second uptake phase by
MSX, and the unaffected initial uptake phase in the presence of MSX, indicate that biphasic uptake pattern is true representation of operation of two distinct transport systems: one being MSX-insensitive rapid ATS (first phase) and the other being MSX-sensitive slower ATS (second phase). Such two distinct ATS have been reported in GS-mutant of Anabaena cycadeae (Singh et al., 1985).

The observed difference in the effluxed pool size, in Nostoc ANTH, by NH₄⁺/MSX addition during second phase (fig 5b and 6b) suggested that free ¹⁴CH₃NH⁺
Fig 6. Effect of MSX (10μM) addition on 14CH$_3$NH$_3^+$ uptake by Anabaena 7120 (a) and Nostoc ANTH (b). MSX added at times indicated (arrows). O, control; △MSX and 14CH$_3$NH$_3^+$ added simultaneously at zero time; ●, MSX added at 5 min after 14CH$_3$NH$_3^+$ addition; △MSX added at 8.5 min after 14CH$_3$NH$_3^+$ addition.

pool inside the cells, which is accumulated during initial phase, is localized at two sites (probably, one inside the thylakoids and the other in the cytoplasm). The cytoplasmic pool seems to be subjected to cyclic retention processes under normal conditions, while thylakoid pool is not.

The two ATS, in Anabaena 7120 were further characterised by studying K_m and V_{max} in the external 14CH$_3$NH$_3^+$ concentration range of 1 - 500 μM. Both ATS exhibited a biphasic pattern of concentration dependent increase in 14CH$_3$NH$_3^+$
Fig 7. a) Concentration dependent 14CH$_3$NH$_3^+$ uptake rates during the initial MSX-insensitive phase by *Anabaena* 7120 filaments showing dual isotherm Michaelis-Menten Kinetics. O, uptake rates at external concentration range of 1 - 25 μM 14CH$_3$NH$_3^+$; Δ, uptake rates at external concentration range of 25 - 400 μM 14CH$_3$NH$_3^+$; b and c) Lineweaver-Burk plots for 14CH$_3$NH$_3^+$ uptake during high affinity mode (1-25 μM external 14CH$_3$NH$_3^+$ concentration, O) and low affinity mode (25 - 400 μM external 14CH$_3$NH$_3^+$ concentration, Δ).

uptake rates. MSX-insensitive ATS showed V_{max} values of 1 and 7 nmol min$^{-1}$ mg$^{-1}$ protein in the external concentration range of 1-25 and 25 - 500 μM, respectively (fig. 7a; data beyond 400 μM not shown). The corresponding K_m values were 8 and 80 μM (fig 7b and 7c: calculated from Lineweaver-Burk plots). The observed V_{max} values for MSX-sensitive ATS were 0.1 and 0.7 nmol min$^{-1}$ mg$^{-1}$ protein (fig 8a) in the external concentration range of 1-50 and 50 - 500 μM, respectively (data beyond 200 μM not shown). The corresponding K_m values were 2.5 and 70 μM (fig 8b and 8c: calculated from Lineweaver-Burk plots).

Thus, both ATS showed a low and high affinity mode of operation depending on the substrate concentration, and a ten-fold higher uptake rate was observed via MSX-insensitive ATS than via MSX-sensitive ATS. There was a seven-fold higher uptake rate via low affinity mode as compared to that via the high affinity mode for each transport system.
Fig 8. a) Concentration dependent 14CH$_3$NH$_3^+$ uptake rates during the second MSX-sensitive phase by *Anabaena* 7120 filaments showing dual isotherm Michaealis-Menten Kinetics. ■ uptake rates at external 14CH$_3$NH$_3^+$ concentration range of 1 - 10 µM; ▲ uptake rates at external 14CH$_3$NH$_3^+$ concentration range of 10 - 200 µM. b and c) Lineweaver-Burk plots for 14CH$_3$NH$_3^+$ uptake during high affinity mode (1 - 10 µM external 14CH$_3$NH$_3^+$ concentration ■) and low affinity mode (10 - 200 µM external 14CH$_3$NH$_3^+$ concentration, ▲).

Overall, our data indicate that there are two ATSs in *Anabaena* 7120 and *Nostoc ANTH*, that both these ATSs show affinity modulation which can serve as a regulatory point for CH$_3$NH$_3^+$/Ammonium entry into the cells, and that *Nostoc ANTH* differs from *Anabaena* 7120 in terms of CH$_3$NH$_3^+$ metabolism.

ACKNOWLEDGEMENTS

We thank INSA and DST for financial support. R. Prakasham thanks NEHU for the UGC fellowship.
REFERENCES

