Mapping the Sites of Putative Tumor Suppressor Genes at 6p25 and 6p21.3 in Cervical Carcinoma: Occurrence of Allelic Deletions in Precancerous Lesions

Anupam Chatterjee, Hugo Arias Pulido, Sanjay Koul, Nestor Beleño, Ana Perilla, Hector Posso, Mahesh Manusukhani, and Vundavalli V. V. S. Murty

Department of Pathology, College of Physicians & Surgeons of Columbia University, New York, New York 10032 [A. C., H. A. P., S. K., M. M., V. V. V. S. M.], and Departments of Genetics, Pathology, Gynecology, and Epidemiology, Instituto Nacional de Cancerología, Santa Fe de Bogotá, Colombia [H. A. P., N. B. A. P., H. P.]

INTRODUCTION

The short arm of chromosome 6 (6p) is frequently affected by LOH in a high proportion of CCs (1–5), suggesting the presence of one or more TSGs on this chromosomal arm. Previous allelotype studies have indicated potential sites of TSGs at 6p23 (6), and at 6p21.3 (5, 7, 8) in CC. The latter region of deletion spans the HLA class I antigen genes, thus suggesting a potential role for HLA genes in the development of CC. These studies have also indicated for a critical region of loss very early in CC development. This study should therefore facilitate the identification of tumor suppressor genes on 6p and may identify which CINs are at high risk of progressing to invasive CC.

RESULTS

Analysis of LOH in Invasive CC Identifies Two Common Regions of Deletions at 6p25 and 6p21.3. Evaluation of LOH on a panel of 59 invasive CCs with 23 STRP markers mapped to chromosome 6p revealed deletions in at least one marker in 66.1% (39 cases) of the tumors. Of the 39 tumors that had LOH on 6p, 8 (21%) showed LOH at all of the informative markers, suggesting 6p monosomy. The patterns of LOH in the remaining 31 tumors that exhibited regional losses on 6p were used to identify minimal regions of deletion (Table 1; Fig. 1). This LOH pattern in invasive CCs revealed two common regions of minimal deletions at 6p25 and 6p21.3 (Fig. 1).

The 6p25 minimal region of deletion derived from 20 tumors spanned the marker AFMB034Ya5 flanked by marker D6S344 proximally and D6S1617 distally. The deletion boundaries were defined

by tumors T-86, T-118, and T-55 proximally and tumors T-6 and T-55 distally (Fig. 1). The 6p21.3 minimal deletion was deduced from the pattern of LOH in 24 tumors as shown in Fig. 1 and Fig. 3. This deletion was spanned by the STRP markers D6S422, D6S1691, and D6S265 flanked by markers CHLC.GATA23E10 proximally and TAP1(CA)n distally. The 6p21.3 deletion boundaries were defined by tumors T-2 and T-13 proximally, and tumors T-13 and T-55, distally.

All but 1 of the 39 tumors with 6p deletions fell within the two defined regions of minimal deletions. Twenty-two tumors exhibited LOH at both regions, whereas 6 tumors showed deletions only at 6p25, and 10 others had deletions only at 6p21.3. Thus, we identified two discrete sites of minimal deletions in CC at 6p25, which was restricted to a 5 cM genetic distance, and 6p21.3, which spans a 10.3 cM genetic distance.

Identification of LOH at 6p25 and 6p21.3 in Precancerous and Early Cancerous Lesions. To evaluate LOH in early cervical cancerous lesions, we studied 16 microdissected CIN specimens using 7 STRP markers spanning 6p25 and 6p21.3, the regions that exhibited a high frequency of LOH in invasive CCs. The pattern of LOH in high-grade and low-grade CINs is shown in Fig. 2.

Eleven of 12 (91.7%) high-grade CINs had LOH at one or more informative markers. Five of these lesions had LOH at all markers studied on 6p, and four others showed deletions encompassing both the 6p25 and 6p21.3 regions but retained heterozygosity of proximal markers. The remaining two high-grade CINs exhibited LOH only at the 6p25–25 region and retained constitutional heterozygosity at all proximal markers including the 6p21.3 region.

One of the four low-grade CINs studied, two (50%) exhibited LOH, one each at the 6p23–25 and 6p21.3 regions (Fig. 2 and Fig. 3). Thus, deletions at 6p25 and 6p21.3 were found in both high- and low-grade CINs, suggesting that these genetic alterations represent very early change in the development of CC.

DISCUSSION

The high frequency of LOH on 6p in CC suggests the possible existence of critical genes in tumor suppression (4, 5, 7, 8). However, the locations of the exact regions of LOH are not known due to lack of systematic LOH mapping studies, except for a single report by Rader et al. (6) identifying a minimal deletion at the 6p23 region. In the present study, we performed high-density LOH mapping on 6p and identified two minimal regions of deletions at 6p25 and 6p21.3. The 6p25 deletion exhibited LOH in 74% (28 of 39 tumors) of the cases, and the 6p21.3 minimal deletion exhibited LOH in 87% (32 of 39 tumors) of the cases among the specimens that had 6p deletions.

The 6p25 minimal deletion that spans a 5 cM genetic distance is a novel site that has not been described previously. Although the 6p25 region has been shown to have a high frequency of LOH in several previous studies (4, 5, 7, 8), the exact location of the minimal deletion is not known. Rader et al. (6) restricted the deletion at 6p23 to a 1 cM distance between 26–27 cM genetic distance. In contrast, our analysis identified the minimal deletion between 1.0 and 6.4 cM genetic distance, (Fig. 1), which is 20 cM distal to the one reported by Rader et al. (6). In the present study, despite the fact that we found a high frequency of LOH at markers spanning the 6p23 region, the patterns of LOH identified the minimal deletion at 6p25. Consistent with this observation, marker AFM634y4a5 mapping to the 6p25 region exhibited the highest frequency (70.4%) of LOH among all of the tested loci (Table 1). The discrepancy between our study and that of Rader et al. (6) may be due to differences in the number and density of markers used in the region or may represent two separate targets of deletions.

The 6p25 minimal deletion interval contains at least 9 genes, 17 UniGenes, and 5 expressed sequence tags.7 The genes include PECI, PRP4, TUBB, P16, ELANH2, NMOR2, BPHL, FKhL6, and FKHL7. The biological functions of the TUBB, P16, ELANH2, FKhL6, and FKHL7 genes suggest a putative TSG role for these genes. The TUBB β-tubulin gene is a member of tubulin multigene family that forms microtubules, which is a constituent of the eukaryotic cytoskeleton and mitotic apparatus. The β-tubulin gene modulates drug responses in human cancer cells by binding to the β-tubulin component of α/β-tubulin heterodimers that facilitate blocking cells at G2-M phase and lead to cell death. Mutations and differential expression of isoforms in the β-tubulin gene confer acquired resistance to anticancer drug taxanes in cancer (11, 12). We have performed mutation analysis of the coding region of the TUBB gene by single-strand conformational polymorphism in 30 invasive CCs that exhibited 6p LOH, followed by direct sequencing of PCR products of tumors suspected of conformational variations by single-strand conformational polymorphism (data not shown). No pathogenic mutations were identified by this analysis, suggesting that TUBB is not a target TSG of the deletion at 6p25 in CCs.

The P16 and ELANH2 genes belong to a superfamily of serine protease inhibitors that play a role in many cellular processes including matrix remodeling and apoptosis. A member of this family, the P15 (maspin) gene, has been shown previously to have a tumor suppressor role in breast carcinoma (13). The FKhL6 and FKHL7 genes belong to a large family of forkhead (Drosophila) genes that regulate transcription. Mutations in forkhead genes cause developmental anomalies (14). The presence of these genes in the 6p25 deletion interval suggests that they may be the targets of deletion in CC and may function as cervical cancer TSGs.

The second site of minimal deletion at 6p21.3 identified in the present study has also been reported to have frequent LOH in invasive CC (4, 7, 8). Although the precise location of the minimal deletion was unclear, the HLA class I genes have been shown previously to have a tumor suppressor role in breast carcinoma (13). The FKhL6 and FKHL7 genes belong to a large family of forkhead (Drosophila) genes that regulate transcription. Mutations in forkhead genes cause developmental anomalies (14). The presence of these genes in the 6p25 deletion interval suggests that they may be the targets of deletion in CC and may function as cervical cancer TSGs.

ZNF proteins, 5 HLA class I genes, and 4 KIAA gene products. Histones are the basic nuclear proteins responsible for the nucleosome structure of the chromosomal fiber in eukaryotes involved in the formation of higher order structures of chromatin (15). They contribute to virtually all chromosomal processes, such as gene regulation, chromosome condensation, recombination, and replication. Butyrophilin genes belong to the immunoglobulin superfamily that plays a role in the development of mammary epithelial cells during lactation (16). A large number of the ZNF family proteins exist in human genome. The ZNF genes perform many key functions, the most important of which is regulation of transcription. The ZNF domains are also thought to be involved in both normal and abnormal cellular proliferation and differentiation (see OMIM number 603971). HLA class I molecules regulate immune response by ligand binding to the T-cell receptor on cytotoxic T cells that recognize and destroy tumor cells. Genetic changes at the 6p21.3 region containing HLA class I molecules may affect the expression of these genes and therefore may allow tumor cells to evade the immune response. Among the other genes mapped to the 6p21.3 deletion interval, the human immediate early response 3 (IER3) gene contains binding sites for transcription factor p53, NF-κB, CEBP, and SP1 genes and thus may have a role in cell growth regulation (17, 18). Mutation analysis of the coding region of the IER3 gene in 30 cases of invasive CC that exhibited 6p LOH did not reveal any pathogenic alterations (data not shown).

Although the role of these gene(s) or gene clusters in cervical carcinogenesis remains unknown, the HLA class I genes have been proposed as targets of 6p21.3 deletions in CC. Loss of HLA class I antigen gene expression is a common phenomenon in most CCs (19), and the loss of HLA-A2 and B7 expression is associated with a poor prognosis in CC (20). The underlying mechanism for the loss of HLA class I gene expression in CC has recently been shown to be genetic alterations including LOH at 6p21.3 and mutations in the HLA-A and/or HLA-B alleles (21). Koopman et al. (21) found that 70% of CCs with loss of HLA class I expression harbor multiple genetic
alterations, including 50% of the cases with LOH on 6p. Our present definition of 6p21.3 minimal deletion includes several HLA class I genes (HLA-A, PS-1, HLA-C, HLA-Bw72, MICA, and HLA-E) at the proximal boundary, supporting the observations made by Koopman et al. (21). Our data therefore suggest that the loss of expression of HLA class I genes seen in many CCs may be due to targeted deletions at 6p21.3. Furthermore, 6p21 LOH has been reported to be predictive of disease recurrence after radiotherapy in CC (22). It remains to be seen whether any TSGs exist at the 6p21.3 minimal deletion and whether there is any synergy between the TSG and MHC class I genes in CC development.

Our study identified two discrete sites of deletions at 6p25 and 6p23.1 that harbor candidate gene(s) important in CC development. This provides a basis for further investigations in finding TSGs in these deleted targets. The 6p genetic deletions have also been reported in CINs, which are precursor lesions for invasive CCs (5, 23). These deleted targets. The 6p genetic deletions have also been reported in CINs, which are precursor lesions for invasive CCs (5, 23).

ACKNOWLEDGMENTS

We thank the gynecologists at Instituto Nacional de Cancerología for specimen collection. We also thank Dr. Ralph Richart for reviewing the histopathological material and critical reading of the manuscript.

REFERENCES


